
A4WSN – the Programming Framework and
Implementation details

Ivano malavolta
i.malavolta@vu.nl

Abstract

This document describes the programming framework and the implementation
details of A4WSN, the architecture-based modelling framework supporting the
development and analysis of Wireless Sensor Networks (WSNs).

Keywords: WSN, Software Architecture, MDE

1. The A4WSN Programming Framework

Figure 1 shows an overview of the A4WSN programming framework. All the
boxes within the programming framework represent the various components of
the generic programming workbench, whereas the C1..Cn and A1..An boxes rep-
resent third-party code generation and analysis plugins, respectively. Third-party
plugins extend the Code Generation Manager and Analysis Manager components
which provide the needed extension points and they communicate with all the
other components of the programming framework (for the sake of clarity we do
not show those connectors in the figure). In the following we will discuss the fa-
cilities and duties of the various components of the generic A4WSN programming
framework, an overview of their implementation details is provided in Section 2.

Models
The central element of the programming framework is the Models repository

that stores all the WSN models developed by architects and designers. Indeed,
stored models can conform to any A4WSN modelling language, which are SAML,
NODEML, ENVML, MAPML, and DEPML. The models repository can be re-
alised in different ways. For instance it may directly rely on the file system of the
machine running the A4WSN platform (this is the solution implemented in the
current version of the A4WSN tool), it may point to resources stored in the cloud

Figure 1: The A4WSN programming framework

or it may refer to some in-memory models representation. If on one side this fea-
ture of the models repository is very flexible in terms of resources consumption
and localisation, on the other side it opens for possible problems of interoperabil-
ity between all the other components of the A4WSN programming framework.
This is exactly why the Model Adapter component exists.

Model Adapter
The model adapter is a component which abstracts the nature of the mod-

els repository to the other components of the A4WSN programming framework.
The model adapter is composed of a set of connectors (each of them tailored to a
specific models storage type) that expose a common interface to all the other com-
ponents to access various elements of the models in a homogeneous way. Also,
the Model Adapter component has a built-in model transformation, called Merger,
that can merge linked models defined in the A4WSN modelling environment. If
we consider Merger as a function, it can be defined as follows:

Merger: MMSAML x MMNODEML x MMENVML x MMMAPML x
MMDEPML → MMmerge

where each MMx is the metamodel of the x modelling language, where x can vary
between SAML, NODEML, ENVML, MAPML, DEPML, and MMmerge

is the union of all the MMx metamodels. In other words, Merger takes as an
input an instance of each modelling language defined in the A4WSN modelling
environment and provides a single model conforming to a unique metamodel as

2

an output. The reason behind the existence of the Merger transformation is that
currently many approaches and tools for code generation and analysis assume to
have a single model as an input, rather than a set of models conforming to different
languages. In order to alleviate this issue with current approaches and tools (which
could have hampered the usefulness of the whole A4WSN platform), we decided
to implement the Merger as an internal transformation to merge separate models
into a single one. Merger can be executed at any time by plugin developers by
calling a dedicated Java method.

Validation
The Validation component executes all the operations to validate A4WSN

models:

• it checks whether one of the A4WSN models conforms to its corresponding
metamodel;

• it executes all the OCL constraints defined in each metamodel within the
A4WSN platform and checks whether they are satisfied or not;

• if defined, it executes the additional OCL constraints that are defined in
some code generation or analysis plugin and checks whether they are satis-
fied or not.

The result of a validation operation is composed of four main elements: (i) a
boolean value representing whether the involved model passes all the checks listed
above, (ii) a set of informative messages that describe the result of the validation in
a human-readable way, (iii) a set of in-memory representations of all the elements
in the models which do not satisfy some of the checks listed above, and (iv) a
set of actions that can be executed by the A4WSN platform as a quick fix of the
identified violations (quick fix operations can be defined in the plugins extending
the A4WSN platform).

The Validation component communicates with Model Adapter in order to ac-
cess various elements of the models to be validated. Also, it communicates with
the Messages Manager and the UI Manager components to show the informative
messages belonging to M to the user and to highlight the elements in their graph-
ical editor violating the constraints, respectively.

3

Messages Manager
The Messages Manager component serves to graphically show informative

messages to the user. A4WSN supports three kind of informative messages which
are error, warning and information. Plugin developers can decide the type of each
message to be shown, depending on its severity. Each message is defined as a
couple < K, T >, where K represents the type of message (i.e., error, warning,
or information) and T represents the textual content of the message in a human
readable way.

UI Manager
The UI Manager component is responsible for the main facilities interacting

with the user interface of the A4WSN platform1. The UI Manager component
provides all the graphical facilities to interact with the plugins and elements of the
A4WSN platform, which are:

• Code Generation Engines View: a dedicated view showing a list of all the
available code generation engines (with their description, icon, name, etc.),
together with their management facilities, such as code generation activa-
tion, code generation results viewer, etc.;

• Analysis Engines View: a dedicated view showing a list of all the avail-
able analysis engines (with their description, icon, name, etc.), together
with their management facilities, such as analysis activation, analysis results
viewer (significantly different from the code generation results viewer), etc.;

• Code Generation Contextual Menu: a contextual menu that triggers the exe-
cution of a code generation engine. A contextual menu is associated to each
model of the A4WSN modelling environment;

• Analysis Contextual Menu: a contextual menu that triggers the execution of
an analysis engine. A contextual menu is associated to each model of the
A4WSN modelling environment;

• Validation Trigger: a contextual menu and a dedicated button in the graphi-
cal editor of each model of the A4WSN modelling environment that triggers
the validation of the current model. Optionally, the user can identify which

1Also the Messages Manager interacts with the UI of the A4WSN platform, however its impact
to the UI is much more limited than that of UI Manager.

4

plugin contains additional constraints to be checked. The results of the trig-
gered validation are managed by the Messages Manager component;

• Code Generation and Analysis Progress Feedback: provides an element in
the UI that graphically shows the progress of the triggered code generation
or analysis. A4WSN provides two types of progress feedback, a progress
bar for activities in which all the steps are known a priori and a round indi-
cator for activities with an unknown length.

• Plugin Additional Parameters View: provides a dedicated view in which
users can provide additional parameter to be passed to the code generation
or analysis engine being triggered. Plugin developers can specify the num-
ber, name, and type of those parameters by using a specific extension point.

Parameter Provider
Parameter Provider component manages the additional parameters that a code

generation or analysis plugin may require for carrying on its activities. As previ-
ously mentioned, additional parameters are defined by using a specific extension
point of the A4WSN programming framework; each parameter is defined as a
triplet < name, T, default >, where name is the unique name of the parameter,
T is the type of the parameter, and default is the optional default value of the
parameter. Available parameter types are listed below.

• String: a textual value;

• Integer: an integer numerical value;

• Float: a decimal numerical value;

• Boolean: a boolean value;

• Local Resource: a file in the local file system of the user, it is referenced by
its path in the file system;

• Remote Resource: a resource in the cloud that can be accessed by a standard
HTTP GET request and is referenced by its URL.

Once the user has provided the values of the additional parameter of a code
generation or analysis engine, the Parameter Provider component makes them
available to the plugin realizing the engine so that it can access them before actu-
ally executing the activity which is being triggered by the user.

5

Code Generation Manager
The Code Generation Manager provides a set of facilities for managing code

generation engines and the extension point that is used by code generation plugin
developers (see Section 1 for more details). For instance it checks which plug-
ins are currently extending its extension point and makes their facilities available
to the end user. It includes all the registered code generation plugins into the
Code Generation Engines View of the UI Manager. It loads plugins into the con-
textual menus of the A4WSN modelling environment. It automatically triggers
the validation operations defined by the plugins before executing the actual code
generation operation. Also, the Code Generation Manager component exposes a
common Java API to plugin developers, so that they can easily interact with all
the other components of the A4WSN programming framework. For example, it
allows developers to access elements of the models in the Models Repository to
push messages to the end user via the Messages Manager and it makes the addi-
tional parameters provided by the end users accessible directly as Java objects.

Analysis Manager
The internal logic of the Analysis Manager component is analogous to that of

Code Generation Manager. The only difference is that it is designed for analysis
plugins, rather than for code generation plugins. Due to its similarity to Code
Generation Manager, the reader can easily grasp its functioning from the descrip-
tion of the latter, so we will not describe the Analysis Manager component in
this paper. In Section 1 we discuss the extension points that are available to code
generation and analysis plugin developers.

Extension Points
The concept of extension point is nicely described in the Eclipse Wiki2, it

says that the extension point declares a contract, typically a combination of XML
markup and Java interfaces, that extensions must conform to. Plug-ins that want
to connect to that extension point must implement that contract in their extension.
The key attribute is that the plug-in being extended knows nothing about the plug-
in that is connecting to it beyond the scope of that extension point contract. This
allows plug-ins built by different individuals or companies to interact seamlessly,
even without their knowing much about one another. The last part of the Eclipse

2http://wiki.eclipse.org/FAQ_What_are_extensions_and_
extension_points\%3F

6

definition of extension point says exactly what we are demanding to the WSN
research community, i.e., not to rebuild the wheel by focussing on modelling lan-
guages, graphical editors, etc., but rather to focus on code generation and analysis
of WSN applications by developing A4WSN plug-ins.

Table 1 shows various extension elements that can be set by third-party devel-
opers with their plugins. For each element we specify its name, whether it belongs
to the code generation (column titled CG) or analysis extension point (column ti-
tled A), and a description about how it will be used by the generic A4WSN pro-
gramming framework.

The extension points defined in the A4WSN programming framework are used
to group code generation and analysis engines into two different groups, so that
the end user knows where those engines can be found. Also, they are used to
provide a common, standard behaviour to various engines that may be defined
upon the A4WSN modelling environment. Both the Code Generation Manager
and Analysis Manager provide a standard management of the workflow that must
be followed when executing those engines. For example, they automatically call
the pre-actions defined by using the Pre Action element of the previously de-
fined extension point (the same holds for the post-action). Automatically manage
the success and error messages to be shown after the execution of either a code
generation or analysis operation, automatically update the UI of the modelling
framework depending on the available plugins extending A4WSN, etc. Moreover,
since plugin developers must comply with to the extension points defined in the
A4WSN programming framework, they will be more keen to provide engines that
are straightforward to integrate and with common basic functionalities, thus easier
to use by end users.

2. Implementation of A4WSN

We make the current prototype of the proposed approach available to the com-
munity as an open-source product with MIT license in order to allow other re-
searchers to use the A4WSN modelling languages as well as the programming
framework described in the previous section. The current prototype of A4WSN
can be downloaded from the A4WSN website (http://a4wsn.di.univaq.it).

We implemented the proposed approach by extending the Eclipse platform3.

3Eclipse project Web site: www.eclipse.org.

7

Element CG A Description
Name 󰃀 󰃀 The name of the engine being provided which will be

shown in the engines view and contextual menus.
Icon 󰃀 󰃀 An image icon of the engine being provided which

will be shown in the engines view and contextual
menus.

Description 󰃀 󰃀 A textual description engine being provided which
will be shown in the engines view.

Network Access 󰃀 󰃀 A boolean for declaring whether the engine uses the
network for its operations which will be shown in the
engines view.

Operation Time 󰃀 󰃀 An estimation of the time needed to complete the op-
eration being defined which will be shown in the en-
gines view.

Target Languages 󰃀 - A list of the target implementation languages which
will be shown in the engines view and contextual
menus.

Target Path 󰃀 - The path in the file system (local to the location of the
plugin) to which the generated code will be saved.

Analysis Type - 󰃀 A list of the properties that will be checked during the
analysis operation (e.g., performance, security, etc.);
it will be shown in the engines view.

Keep Intermedi-
ate

- 󰃀 A boolean value (optionally a path in the file system)
to specify whether (and where) the analysis engine
keeps possible intermediate resources.

Additional Pa-
rameters

󰃀 󰃀 A list of parameter types definition that will be used
by the Parameter Provider component of A4WSN.

Validation Con-
straints

󰃀 󰃀 A list of OCL constraints, together with their infor-
mative messages and quick fix operations that must
be used by the Validation component of A4WSN.

Pre Action 󰃀 󰃀 A reference to a Java class defining the method that
will always be called before executing the engine be-
ing provided.

Post Action 󰃀 󰃀 A reference to a Java class defining the method that
will always be called after the engine being provided
is executed.

Table 1: Elements of the extension points for code generation or analysis plugins

8

Eclipse is an open-source development platform comprised of extensible frame-
works and tools for building, deploying and managing software across the life
cycle. We decided to use Eclipse as starting point for our modelling environ-
ment for three main reasons. First, many extensions already exist covering some
aspects of our approach (e.g., graphical syntax definition for newly created lan-
guages, models persistence support, etc.). Second, its plugin architecture allows
us to provide a set of extension points that other developers can use to extend our
modelling framework,. Third, the Eclipse community is widely spread throughout
the world, raising the possibility of adoption of our modelling environment.

For what concerns the modelling languages, model-driven engineering tech-
niques are used to define their concepts, and their modelling environment. More
specifically, we specified the static semantics of the languages by means of their
underlying metamodels. Those metamodels are defined by using the Eclipse
modelling Framework (EMF)4, that is a Java framework and code generation
facility for building tools and other applications based on a metamodel. The con-
crete syntax of the modelling languages has been defined by using the Graphical
modelling Framework (GMF)5, a model-driven approach to generate graphical
editors in Eclipse.

The intermediate modelling languages (i.e., MAPML and DEPML) are tech-
nically called weaving models. Weaving models are special kinds of models for
defining relations among other models and to establish semantic links among
model elements. Weaving models have been successfully used in many fields,
such as software architecture [1] and software product lines [2]. We use the Atlas
Model Weaver (AMW) [3] for managing those weaving models.

For what concerns the programming framework, we implemented it as a set
of Eclipse plugins, each one implementing a single component of the program-
ming framework, as it is depicted in Figure 1. Those plugins are implemented
in Java and their dependencies are realized by means of the plugins management
system provided by Eclipse. Each plugin declares the others it depends on and
configuration parameters via a specific XML configuration file. The communica-
tion among plugins is handled by standard Java calls. Also, the code generation
framework and the analysis framework provide two extension points dedicated to
code generation and analysis plugins, respectively. The signatures of those exten-
sion points are defined in the same XML configuration files used for defining the

4EMF project Web site: http://www.eclipse.org/modeling/emf/.
5GMF project Web site: http://www.eclipse.org/modeling/gmf/.

9

dependencies between plugins, whereas their implementation is defined as Java
classes referenced by the XML configuration files. For the sake of brevity, we do
not provide the details on how the programming framework works and on how
its plugins interact. A detailed description of those aspects can be found in the
Eclipse plugin developer guide6.

References

[1] I. Malavolta, H. Muccini, P. Pelliccione, D. Tamburri, Providing archi-
tectural languages and tools interoperability through model transformation
technologies, Software Engineering, IEEE Transactions on 36 (1) (2010)
119 –140.

[2] K. Czarnecki, M. Antkiewicz, Mapping features to models: A template ap-
proach based on superimposed variants, in: GPCE, 2005, pp. 422–437.

[3] Didonet Del Fabro M., Bézivin J., Jouault F. and Breton E. and Gueltas G.,
AMW: a generic model weaver, in: Proc. of 1 re Journ e sur l’Ing nierie
Dirig e par les Mod les, Paris, France. pp 105-114, 2005.

6Eclipse Platform Plug-in Developer Guide: http://help.eclipse.org/helios/index.jsp

10

